Query Guide

Introduction

This guide covers common query patterns, optimization techniques, and best practices for retrieving data from the Panda Protocol subgraph.

Basic Queries

Pool Data

# Get basic pool information
{
  pandaPool(id: "0x123...") {
    id
    price
    volumeUSD
    swapsCount
    graduated
  }
}

# List active pools with high volume
{
  pandaPools(
    where: {
      volumeUSD_gt: "100000",
      graduated: false
    }
    orderBy: volumeUSD
    orderDirection: desc
    first: 10
  ) {
    id
    price
    volumeUSD
  }
}

Trading Activity

Advanced Queries

Time-Based Queries

Market Analysis

Query Optimization

Pagination

Field Selection

Using Fragments

Common Use Cases

Trading Interface Data

Analytics Dashboard

Real-time Data Updates

Polling Strategy

Using Block Numbers

Error Handling

Null Checks

Block Timestamps

Best Practices

  1. Query Performance

    • Use pagination for large datasets

    • Select only needed fields

    • Optimize sorting and filtering

  2. Data Freshness

    • Consider indexing delays

    • Implement proper polling intervals

    • Use block numbers for consistency

  3. Error Recovery

    • Handle null entities gracefully

    • Validate data ranges

    • Implement retry logic

Next Steps

Continue to Advanced Usage for:

  • Complex query patterns

  • Performance optimization

  • Edge case handling

Last updated